Reference

Docstrings for SpatRasters.

DataFrame

DataFrame <: AbstractDataFrame

An AbstractDataFrame that stores a set of named columns.

The columns are normally AbstractVectors stored in memory, particularly a Vector, PooledVector or CategoricalVector.

Constructors

DataFrame(pairs::Pair...; makeunique::Bool=false, copycols::Bool=true)
DataFrame(pairs::AbstractVector{<:Pair}; makeunique::Bool=false, copycols::Bool=true)
DataFrame(ds::AbstractDict; copycols::Bool=true)
DataFrame(; kwargs..., copycols::Bool=true)

DataFrame(table; copycols::Union{Bool, Nothing}=nothing)
DataFrame(table, names::AbstractVector;
          makeunique::Bool=false, copycols::Union{Bool, Nothing}=nothing)
DataFrame(columns::AbstractVecOrMat, names::AbstractVector;
          makeunique::Bool=false, copycols::Bool=true)

DataFrame(::DataFrameRow; copycols::Bool=true)
DataFrame(::GroupedDataFrame; copycols::Bool=true, keepkeys::Bool=true)

Keyword arguments

  • copycols : whether vectors passed as columns should be copied; by default set to true and the vectors are copied; if set to false then the constructor will still copy the passed columns if it is not possible to construct a DataFrame without materializing new columns. Note the copycols=nothing default in the Tables.jl compatible constructor; it is provided as certain input table types may have already made a copy of columns or the columns may otherwise be immutable, in which case columns are not copied by default. To force a copy in such cases, or to get mutable columns from an immutable input table (like Arrow.Table), pass copycols=true explicitly.
  • makeunique : if false (the default), an error will be raised

(note that not all constructors support these keyword arguments)

Details on behavior of different constructors

It is allowed to pass a vector of Pairs, a list of Pairs as positional arguments, or a list of keyword arguments. In this case each pair is considered to represent a column name to column value mapping and column name must be a Symbol or string. Alternatively a dictionary can be passed to the constructor in which case its entries are considered to define the column name and column value pairs. If the dictionary is a Dict then column names will be sorted in the returned DataFrame.

In all the constructors described above column value can be a vector which is consumed as is or an object of any other type (except AbstractArray). In the latter case the passed value is automatically repeated to fill a new vector of the appropriate length. As a particular rule values stored in a Ref or a 0-dimensional AbstractArray are unwrapped and treated in the same way.

It is also allowed to pass a vector of vectors or a matrix as as the first argument. In this case the second argument must be a vector of Symbols or strings specifying column names, or the symbol :auto to generate column names x1, x2, … automatically. Note that in this case if the first argument is a matrix and copycols=false the columns of the created DataFrame will be views of columns the source matrix.

If a single positional argument is passed to a DataFrame constructor then it is assumed to be of type that implements the Tables.jl interface using which the returned DataFrame is materialized.

If two positional arguments are passed, where the second argument is an AbstractVector, then the first argument is taken to be a table as described in the previous paragraph, and columns names of the resulting data frame are taken from the vector passed as the second positional argument.

Finally it is allowed to construct a DataFrame from a DataFrameRow or a GroupedDataFrame. In the latter case the keepkeys keyword argument specifies whether the resulting DataFrame should contain the grouping columns of the passed GroupedDataFrame and the order of rows in the result follows the order of groups in the GroupedDataFrame passed.

Notes

The DataFrame constructor by default copies all columns vectors passed to it. Pass the copycols=false keyword argument (where supported) to reuse vectors without copying them.

By default an error will be raised if duplicates in column names are found. Pass makeunique=true keyword argument (where supported) to accept duplicate names, in which case they will be suffixed with _i (i starting at 1 for the first duplicate).

If an AbstractRange is passed to a DataFrame constructor as a column it is always collected to a Vector (even if copycols=false). As a general rule AbstractRange values are always materialized to a Vector by all functions in DataFrames.jl before being stored in a DataFrame.

DataFrame can store only columns that use 1-based indexing. Attempting to store a vector using non-standard indexing raises an error.

The DataFrame type is designed to allow column types to vary and to be dynamically changed also after it is constructed. Therefore DataFrames are not type stable. For performance-critical code that requires type-stability either use the functionality provided by select/transform/combine functions, use Tables.columntable and Tables.namedtupleiterator functions, use barrier functions, or provide type assertions to the variables that hold columns extracted from a DataFrame.

Metadata: this function preserves all table and column-level metadata. As a special case if a GroupedDataFrame is passed then only :note-style metadata from parent of the GroupedDataFrame is preserved.

Examples

julia> DataFrame((a=[1, 2], b=[3, 4])) # Tables.jl table constructor
2×2 DataFrame
 Row │ a      b
     │ Int64  Int64
─────┼──────────────
   1 │     1      3
   2 │     2      4

julia> DataFrame([(a=1, b=0), (a=2, b=0)]) # Tables.jl table constructor
2×2 DataFrame
 Row │ a      b
     │ Int64  Int64
─────┼──────────────
   1 │     1      0
   2 │     2      0

julia> DataFrame("a" => 1:2, "b" => 0) # Pair constructor
2×2 DataFrame
 Row │ a      b
     │ Int64  Int64
─────┼──────────────
   1 │     1      0
   2 │     2      0

julia> DataFrame([:a => 1:2, :b => 0]) # vector of Pairs constructor
2×2 DataFrame
 Row │ a      b
     │ Int64  Int64
─────┼──────────────
   1 │     1      0
   2 │     2      0

julia> DataFrame(Dict(:a => 1:2, :b => 0)) # dictionary constructor
2×2 DataFrame
 Row │ a      b
     │ Int64  Int64
─────┼──────────────
   1 │     1      0
   2 │     2      0

julia> DataFrame(a=1:2, b=0) # keyword argument constructor
2×2 DataFrame
 Row │ a      b
     │ Int64  Int64
─────┼──────────────
   1 │     1      0
   2 │     2      0

julia> DataFrame([[1, 2], [0, 0]], [:a, :b]) # vector of vectors constructor
2×2 DataFrame
 Row │ a      b
     │ Int64  Int64
─────┼──────────────
   1 │     1      0
   2 │     2      0

julia> DataFrame([1 0; 2 0], :auto) # matrix constructor
2×2 DataFrame
 Row │ x1     x2
     │ Int64  Int64
─────┼──────────────
   1 │     1      0
   2 │     2      0

GOF

No documentation found for public symbol.

HydroTools.GOF is a Function.

# 1 method for generic function "GOF" from HydroTools:
 [1] GOF(obs::AbstractVector{T}, sim::AbstractVector{T}) where T<:Real
     @ ~/.julia/packages/HydroTools/DJBjN/src/GOF.jl:67

ModelCalib

ModelCalib(df::AbstractDataFrame, par0::AbstractETParam; 
    IGBPcode=nothing, maxn=2500, of_gof=:NSE, kw...)

ModelCalib_IGBPs

No documentation found for public symbol.

PenmanMonteithLeuning.ModelCalib_IGBPs is a Function.

# 1 method for generic function "ModelCalib_IGBPs" from PenmanMonteithLeuning:
 [1] ModelCalib_IGBPs(data::DataFrames.AbstractDataFrame; parNames, of_gof, maxn)
     @ ~/work/PML.jl/PML.jl/src/ModelCalib.jl:6

PMLV2

PMLV2 (Penman–Monteith–Leuning Version 2) Evapotranspiration model

Arguments

  • Prcp : mm/d
  • Tavg : degC
  • Rs : W m-2
  • Rn : W m-2
  • VPD : W m-2
  • U2 : m/s
  • LAI : m2 m-2
  • Pa : kPa
  • Ca : ppm, default 380
  • Ω : clamping index, default is 1.0

Examples

References

  1. Gan Rong, 2018, Ecohydrology
  2. Zhang Yongqiang, 2019, RSE
  3. Kong Dongdong, 2019, ISPRS
PMLV2(Prcp, Tavg, Rs, Rn, VPD, U2, LAI, Pa, Ca; par=param0, frame=3)

Notes

一个站点的计算。注意,不同植被类型,参数不同。

Arguments

  • frame: in 8-days

Arguments

  • kw: named keyword arguments

    • r: interm_PML

PMLV2_sites

No documentation found for public symbol.

PenmanMonteithLeuning.PMLV2_sites is a Function.

# 1 method for generic function "PMLV2_sites" from PenmanMonteithLeuning:
 [1] PMLV2_sites(df::DataFrames.AbstractDataFrame; par, kw...)
     @ ~/work/PML.jl/PML.jl/src/PMLV2.jl:134

ParNames

No documentation found for public symbol.

PenmanMonteithLeuning.ParNames is of type Vector{Symbol}.

Summary

mutable struct Vector{Symbol}

Fields

ref  :: MemoryRef{Symbol}
size :: Tuple{Int64}

Supertype Hierarchy

Vector{Symbol} <: DenseVector{Symbol} <: AbstractVector{Symbol} <: Any

Param_PMLV2

struct Param_PMLV2{FT<:AbstractFloat} <: AbstractETParam{FT}

Fields

  • α::Real: initial slope of the light response curve to assimilation rate, (i.e., quantum efficiency; μmol CO2 [μmol PAR]⁻¹)` Default: 0.06
  • η::Real: initial slope of the CO2 response curve to assimilation rate, (i.e., carboxylation efficiency; μmol m⁻² s⁻¹ [μmol m⁻² s⁻¹]⁻¹) Default: 0.04
  • g1::Real: stomatal conductance coefficient, μmol m⁻² s⁻¹ Default: 10.0
  • VCmax25::Real: carbon saturated rate of photosynthesis at 25 °C, μmol m⁻² s⁻¹ Default: 50.0
  • VPDmin::Real: parameter to constrain gc, kPa Default: 0.9
  • VPDmax::Real: parameter to constrain gc, kPa Default: 4.0
  • D0::Real: 水汽压参数 Default: 0.7
  • kQ::Real: extinction coefficients for visible radiation Default: 0.45
  • kA::Real: extinction coefficients for available energy Default: 0.7
  • S_sls::Real: Specific leaf storage, van Dijk, A.I.J.M, 2001, Eq2 Default: 0.1
  • fER0::Real: Canopy cover fraction related parameter Default: 0.1
  • hc::Real: canopy height, [m] Default: 1.0
  • d_pc::Real: photoperiod constraint Default: 2.0
  • _hc::Vector{FT} where FT<:Real: Default: [1.0, 1.0, 1.0]
  • _η::Vector{FT} where FT<:Real: Default: [0.04, 0.04, 0.04]
  • _α::Vector{FT} where FT<:Real: Default: [0.06, 0.06, 0.06]
  • _g1::Vector{FT} where FT<:Real: Default: [10.0, 10.0, 10.0]
  • _VCmax25::Vector{FT} where FT<:Real: Default: [50.0, 50.0, 50.0]

PenmanMonteithLeuning

No docstring found for public module PenmanMonteithLeuning.

Public names

DataFrame, GOF, ModelCalib, ModelCalib_IGBPs, PMLV2, PMLV2_sites, ParNames, Param_PMLV2, T_adjust_Vm25, aerodynamic_conductance, bounds, cal_Ei_Dijk2021, f_VPD_Zhang2019, file_FLUXNET_CRO, file_FLUXNET_CRO_USTwt, fread, fwrite, getDataType, get_bounds, hc_raw, interm_PML, map_df_tuple, melt_list, model_goal, model_gof, movmean2, nanmean2, output_PML, par0, photosynthesis, round2, select_param, theta0, theta2par, theta2param, to_mat

Displaying contents of readme found at /home/runner/work/PML.jl/PML.jl/README.md

Penman-Monteith-Leuning (PML) Evapotranspiration in Julia

Stable Dev CI codecov

TODO

冠层结构
模型结构
模型表现

T_adjust_Vm25

No documentation found for public symbol.

PenmanMonteithLeuning.T_adjust_Vm25 is a Function.

# 1 method for generic function "T_adjust_Vm25" from PenmanMonteithLeuning:
 [1] T_adjust_Vm25(Tavg::T) where T<:Real
     @ ~/work/PML.jl/PML.jl/src/photosynthesis.jl:47

aerodynamic_conductance

aerodynamic_conductance(U2, hc)

Arguments

  • U2: wind speed at 2m
  • hc: canopy height

Return

  • Ga: aerodynamic conductance in m/s

bounds

No documentation found for private symbol.

FieldMetadata.bounds is a Function.

# 27 methods for generic function "bounds" from FieldMetadata:
  [1] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:α}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
  [2] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:_g1}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
  [3] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:g1}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
  [4] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:kA}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
  [5] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:VPDmin}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
  [6] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:D0}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
  [7] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:_hc}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
  [8] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:kQ}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
  [9] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:VPDmax}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [10] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:d_pc}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [11] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:_α}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [12] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:_VCmax25}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [13] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:S_sls}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [14] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:fER0}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [15] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:_η}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [16] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:hc}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [17] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:η}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [18] bounds(::Type{<:Param_PMLV2}, ::Type{Val{:VCmax25}})
     @ PenmanMonteithLeuning ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:214
 [19] bounds(::Type{var"#214#X"}, keys::Tuple{}) where var"#214#X"
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:66
 [20] bounds(::Type{var"#211#X"}, keys::Tuple) where var"#211#X"
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:64
 [21] bounds(x::Type, key::Type)
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:56
 [22] bounds(::Type{var"#204#X"}, key::Symbol) where var"#204#X"
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:59
 [23] bounds(x::Type{var"#208#X"}) where var"#208#X"
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:63
 [24] bounds(::var"#198#X", key::Symbol) where var"#198#X"
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:57
 [25] bounds(::var"#201#X", key::Type) where var"#201#X"
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:58
 [26] bounds(x, key)
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:55
 [27] bounds(::var"#206#X") where var"#206#X"
     @ ~/.julia/packages/FieldMetadata/oeQwS/src/FieldMetadata.jl:62

cal_Ei_Dijk2021

cal_Ei_Dijk2021(Prcp::T, LAI::T, par::Param_PMLV2) where {T<:Real}

References

  1. van Dijk, A.I.J.M, 2001, Eq2.

f_VPD_Zhang2019

No documentation found for public symbol.

PenmanMonteithLeuning.f_VPD_Zhang2019 is a Function.

# 1 method for generic function "f_VPD_Zhang2019" from PenmanMonteithLeuning:
 [1] f_VPD_Zhang2019(VPD::T, par::Param_PMLV2) where T<:Real
     @ ~/work/PML.jl/PML.jl/src/water_constrain.jl:2

file_FLUXNET_CRO

No documentation found for public symbol.

PenmanMonteithLeuning.file_FLUXNET_CRO is of type String.

Summary

mutable struct String

Supertype Hierarchy

String <: AbstractString <: Any

file_FLUXNET_CRO_USTwt

No documentation found for public symbol.

PenmanMonteithLeuning.file_FLUXNET_CRO_USTwt is of type String.

Summary

mutable struct String

Supertype Hierarchy

String <: AbstractString <: Any

fread

fread(file::AbstractString; header=true, kw...)

Arguments

  • file: the csv file to read
  • header: whether the csv file has header?
  • kw: other parameters for CSV.File

Examaple

fread("a.csv")

fwrite

fwrite(df, file; kw...)
df = DataFrame(A=1:3, B=4:6, C=7:9)
fwrite(df, "a.csv")
fwrite(df, "a.csv", append=true)

getDataType

No documentation found for public symbol.

PenmanMonteithLeuning.getDataType is a Function.

# 1 method for generic function "getDataType" from PenmanMonteithLeuning:
 [1] getDataType(x)
     @ ~/work/PML.jl/PML.jl/src/utilize.jl:42

get_bounds

No documentation found for public symbol.

PenmanMonteithLeuning.get_bounds is a Function.

# 2 methods for generic function "get_bounds" from PenmanMonteithLeuning:
 [1] get_bounds(parNames::Vector{Symbol})
     @ ~/work/PML.jl/PML.jl/src/Parameter.jl:65
 [2] get_bounds()
     @ ~/work/PML.jl/PML.jl/src/Parameter.jl:65

hc_raw

No documentation found for public symbol.

PenmanMonteithLeuning.hc_raw is of type Vector{Float64}.

Summary

mutable struct Vector{Float64}

Fields

ref  :: MemoryRef{Float64}
size :: Tuple{Int64}

Supertype Hierarchy

Vector{Float64} <: DenseVector{Float64} <: AbstractVector{Float64} <: Any

interm_PML

No documentation found for public symbol.

Summary

mutable struct interm_PML{T}

Fields

ET        :: T
GPP       :: T
Ec        :: T
Ecr       :: T
Eca       :: T
Ei        :: T
Pi        :: T
Es_eq     :: T
Eeq       :: T
ET_water  :: T
Ga        :: T
Gc_w      :: T
fval_soil :: T
Es        :: T

map_df_tuple

No documentation found for public symbol.

PenmanMonteithLeuning.map_df_tuple is a Function.

# 1 method for generic function "map_df_tuple" from PenmanMonteithLeuning:
 [1] map_df_tuple(fun::Function, lst::DataFrames.GroupedDataFrame{DataFrame}, args...; kw...)
     @ ~/work/PML.jl/PML.jl/src/utilize.jl:62

melt_list

melt_list(list; deepcopy=false, kw...)

Arguments

  • list: list of DataFrames

Examples

d = data.table(; x=1, y=2)
l = [d, d, d, d]

r1 = melt_list(l, id=1:4) # id all is 4
r2 = melt_list(l, id=1:4, deepcopy=true)

melt_list(l; a = 1, b = 2)

model_goal

No documentation found for public symbol.

PenmanMonteithLeuning.model_goal is a Function.

# 1 method for generic function "model_goal" from PenmanMonteithLeuning:
 [1] model_goal(df, theta, parNames; IGBPcode, of_gof, verbose)
     @ ~/work/PML.jl/PML.jl/src/ModelCalib.jl:54

model_gof

No documentation found for public symbol.

PenmanMonteithLeuning.model_gof is a Function.

# 1 method for generic function "model_gof" from PenmanMonteithLeuning:
 [1] model_gof(df_out::DataFrame; all)
     @ ~/work/PML.jl/PML.jl/src/ModelCalib.jl:80

movmean2

No documentation found for public symbol.

PenmanMonteithLeuning.movmean2 is a Function.

# 2 methods for generic function "movmean2" from PenmanMonteithLeuning:
 [1] movmean2(y::AbstractVector{T}, win_left::Integer, win_right::Integer) where T<:Real
     @ ~/work/PML.jl/PML.jl/src/utilize.jl:10
 [2] movmean2(y::AbstractVector{T}, win_left::Integer) where T<:Real
     @ ~/work/PML.jl/PML.jl/src/utilize.jl:10

nanmean2

No documentation found for public symbol.

PenmanMonteithLeuning.nanmean2 is a Function.

# 1 method for generic function "nanmean2" from PenmanMonteithLeuning:
 [1] nanmean2(x::T1, y::T2) where {T1<:Real, T2<:Real}
     @ ~/work/PML.jl/PML.jl/src/utilize.jl:30

output_PML

No documentation found for public symbol.

Summary

mutable struct output_PML{T}

Fields

n         :: Integer
ET        :: Array{T, 1}
GPP       :: Array{T, 1}
Ec        :: Array{T, 1}
Ecr       :: Array{T, 1}
Eca       :: Array{T, 1}
Ei        :: Array{T, 1}
Pi        :: Array{T, 1}
Es_eq     :: Array{T, 1}
Eeq       :: Array{T, 1}
ET_water  :: Array{T, 1}
Ga        :: Array{T, 1}
Gc_w      :: Array{T, 1}
fval_soil :: Array{T, 1}
Es        :: Array{T, 1}

par0

No documentation found for public symbol.

PenmanMonteithLeuning.par0 is of type Param_PMLV2{Float64}.

Summary

mutable struct Param_PMLV2{Float64}

Fields

α        :: Float64
η        :: Float64
g1       :: Float64
VCmax25  :: Float64
VPDmin   :: Float64
VPDmax   :: Float64
D0       :: Float64
kQ       :: Float64
kA       :: Float64
S_sls    :: Float64
fER0     :: Float64
hc       :: Float64
d_pc     :: Float64
_hc      :: Vector{Float64}
_η       :: Vector{Float64}
_α       :: Vector{Float64}
_g1      :: Vector{Float64}
_VCmax25 :: Vector{Float64}

Supertype Hierarchy

Param_PMLV2{Float64} <: PenmanMonteithLeuning.AbstractETParam{Float64} <: Any

photosynthesis

photosynthesis(Tavg::T, Rs::T, VPD::T, LAI::T, Ca=380.0; par)

Example

# GPP, Gc_w = photosynthesis(Tavg, Rs, VPD, LAI, Ca; par)

round2

No documentation found for public symbol.

PenmanMonteithLeuning.round2 is a Function.

# 2 methods for generic function "round2" from PenmanMonteithLeuning:
 [1] round2(x::NamedTuple, digits; kw...)
     @ ~/work/PML.jl/PML.jl/src/utilize.jl:7
 [2] round2(x::NamedTuple; ...)
     @ ~/work/PML.jl/PML.jl/src/utilize.jl:7

select_param

No documentation found for public symbol.

PenmanMonteithLeuning.select_param is a Function.

# 1 method for generic function "select_param" from PenmanMonteithLeuning:
 [1] select_param(par::PenmanMonteithLeuning.AbstractETParam, parNames)
     @ ~/work/PML.jl/PML.jl/src/Parameter.jl:91

theta0

No documentation found for public symbol.

PenmanMonteithLeuning.theta0 is of type Vector{Any}.

Summary

mutable struct Vector{Any}

Fields

ref  :: MemoryRef{Any}
size :: Tuple{Int64}

Supertype Hierarchy

Vector{Any} <: DenseVector{Any} <: AbstractVector{Any} <: Any

theta2par

No documentation found for public symbol.

PenmanMonteithLeuning.theta2par is a Function.

# 1 method for generic function "theta2par" from PenmanMonteithLeuning:
 [1] theta2par(theta::Vector, parNames::Vector{Symbol})
     @ ~/work/PML.jl/PML.jl/src/Parameter.jl:87

theta2param

No documentation found for public symbol.

PenmanMonteithLeuning.theta2param is a Function.

# 1 method for generic function "theta2param" from PenmanMonteithLeuning:
 [1] theta2param(params::Array{Vector{T}, 1}, IGBPs) where T<:Real
     @ ~/work/PML.jl/PML.jl/src/Parameter.jl:102

to_mat

No documentation found for public symbol.

PenmanMonteithLeuning.to_mat is a Function.

# 1 method for generic function "to_mat" from PenmanMonteithLeuning:
 [1] to_mat(res::output_PML{T}) where T<:Real
     @ ~/work/PML.jl/PML.jl/src/DataType.jl:70